

Budgets and Schedules

R.D. Stambaugh

Presented at
Office of Fusion Energy Science
FY07 Budget Planning Meeting
Washington, DC

March 15-16, 2005

WE ARE PROCEEDING WITH AN ALTERNATE OPERATING SCHEDULE

- Collects three vent periods (4 months each) into one 12 month torus opening
- Enables effective use of existing staff to take on some major projects
- Preserves run time capability
 - FY05 (14 weeks)
 - FY06 (5 run weeks, incremental request 12 weeks)
 - FY07 (12 run weeks, incremental request 25 weeks, new capabilities)

DIII-D Facility Schedules (04–07)

Aut it Nove		F	iscal	Yea	r 200)4						Fisc	al Ye	ar 20	005									Fisc	al Ye	ear 2	2006						Fis	cal Y	'ear 2	007	
Activity Name		Α	М	J	J	Α	s	О	N	D	J	F	М	Α	М	J	J	Α	s	0	Ν	D	J	F	М	Α	М	J	J	Α	s	О	N	D	J F	= N	1 A
Previous			Ope	ratio	ns	Co Ve		wn /	Clos Star				O _I	oera	tions			Co Ve		own /		ose / artup			(Ope	ratio	ns L			Cool o /ent	lown	/ Clo Sta	se / rtup			Opera
Operating Schedule FY04-07			18	3 wee	eks	, L		stall pair					14	4 we	eks				R	nstall Repai	r					14 \	week	s 				nsta Repa					14 w
Present	0	pera	tions						 	oera	tions	6		Cool /ent	down	1/		l	_or Q	ng pe	To nir	ru: าg	S			Close Starti					Lι	Ope	ration	s /			
Schedule FY04-07	1	8 we	eks						1-	4 we	eks 																5 v	veek	(S		ency					12 w	eeks
	М	Α	М	J	J	Α	S	0	N	D	J	F	М	Α	М	J	J	Α	S	0	N	D	J	F	М	A	М	J	J	Α	S	0	N	D	J F	= N	1 A

Enables:

- ECH- 6 long pulse gyrotrons
- Rotation of 210 degree beamline to counter and MSE diagnostic
- Lower divertor modification
- Cooling water tower replacement
- MG refurbishment
- TF belt bus cooling and freewheeling diodes for 10 s ops

OPERATING SCHEDULES FY06-07

PROPOSED DIII-D FY2000	6 OPERATIONS SO	CHEDULE	PROPOSE	D DIII-D FY2007	OPERATIONS S	CHEDULE
Oct 05 Nov 05	Dec 05	Jan 06	Oct 06	Nov 06	Dec 06	Jan 07
S M T W T F S S M T W T F S	SSMTWTFSSI	MTWTFS	S M T WT F S			
1 1 2 3 4	5 1 2 3 1	2 3 4 5 6 7	1 2 3 4 5 6 7	1 2 3 4	1 2	1 2 3 4 5 6
2 3 4 5 6 7 8 6 7 8 9 10 11 1	2 4 5 6 7 8 9 10 8	9 10 11 12 13 14	8 9 10 11 12 13 14	5 6 7 8 9 10 11	3 4 5 6 7 8 9	7 8 9 10 11 12 13
9 10 11 12 13 14 15 13 14 15 16 17 18 1	9 11 12 13 14 15 16 17 15	16 17 18 19 20 21	15 16 17 18 19 20 21	12 13 14 15 16 17 18	10 11 12 13 14 15 16	14 15 16 17 18 19 20
16 17 18 19 20 21 22 20 21 22 23 24 25 2	26 18 19 20 21 22 23 24 22 2	23 24 25 26 27 28	22 23 24 25 26 27 28	19 20 21 22 23 24 25	17 18 19 20 21 22 23	21 22 23 24 25 26 27
23 24 25 26 27 28 29 27 28 29 30	25 26 27 28 29 30 31 29 3	30 31	29 30 31	26 27 28 29 30	24 25 26 27 28 29 30	28 29 30 31
30 31					31	
Feb 06 Mar 06	Apr 06	May 06	Feb 07	Mar 07	Apr 07	May 07
S M T W T F S S M T W T F S	S S M T W T F S S I	MTWTFS	S M T WT F S			
1 2 3 4 1 2 3	4 1	1 2 3 4 5 6	1 2 3	1 2 3	1 2 3 4 5 6 7	1 2 3 4 5
5 6 7 8 9 10 11 5 6 7 8 9 10 1	1 2 3 4 5 6 7 8 7	8 9 10 11 12 13	4 5 6 7 8 9 10	4 5 6 7 8 9 10	8 9 10 11 12 13 14	6 7 8 9 10 11 12
12 H 14 15 16 17 18 12 13 14 15 16 17 1	8 9 10 11 12 13 14 15 14	15 16 17 18 19 20	11 H 13 14 15 16 17	11 12 13 14 15 16 17	15 16 17 18 19 20 21	13 14 15 16 17 18 19
19 20 21 22 23 24 25 19 20 21 22 23 24 2	25 16 17 18 19 20 21 22 21	22 23 24 25 26 27	18 19 20 21 22 23 24	18 19 20 21 22 23 24	22 23 24 25 26 27 28	20 21 22 23 24 25 26
26 27 28 26 27 28 29 30 31	23 24 25 26 27 28 29 28 1	H 30 31	25 26 27 28	25 26 27 28 29 30 31	29 30	27 H 29 30 31
	30					
Jun 06 Jul 06	Aug 06	Sep 06	Jun 07	Jul 07	Aug 07	Sep 07
S M T W T F S S M T W T F S	S S M T W T F S S I	MTWTFS	S M T WT F S	S M T WT F S	S M T W T F S	S M T WT F S
1 2 3	1 1 2 3 4 5	1 2	1 2	1 2 3 4 5 6 7	1 2 3 4	1
4 5 6 7 8 9 10 2 3 4 5 6 7	8 6 7 8 9 10 11 12 3	4 5 6 7 8 9	3 4 5 6 7 8 9	8 9 10 11 12 13 14	5 6 7 8 9 10 11	2 3 4 5 6 7 8
11 12 13 14 15 16 17 9 10 11 12 13 14 1	5 13 14 15 16 17 18 19 10	11 12 13 14 15 16	10 11 12 13 14 15 16	15 16 17 18 19 20 21	12 13 14 15 16 17 18	9 10 11 12 13 14 15
18 19 20 21 22 23 24 16 17 18 19 20 21 2	22 20 21 22 23 24 25 26 17	18 19 20 21 22 23	17 18 19 20 21 22 23	22 23 24 25 26 27 28	19 20 21 22 23 24 25	
25 26 27 28 29 30 23 24 25 26 27 28 2	29 27 28 29 30 31 24 2	25 26 27 28 29 30	24 25 26 27 28 29 30	29 30 31	26 27 28 29 30 31	23 24 25 26 27 28 29
30 31						30
Plasma physics Startup C	Option 12 weeks		Plasma physics	Startup Vent	Option 20 weeks	Option 25 weeks
5 weeks 7	weeks		12 weeks		8 weeks	5 weeks

A STRONG COLLABORATION BETWEEN GA (DIII-D) AND ASIPP (EAST) IS BENEFITING BOTH SIDES GREATLY

GA	(DIII-D) to ASIPP (EAST)	AS	IPP (EAST) to GA (DIII-D)
1.	Train ASIPP scientists on DIII–D plasma control system	1.	ASIPP provides three operations support persons to DIII-D
2.	DIII–D plasma control system for EAST	2.	ASIPP provides engineers to help design the DIII-D lower divertor modification
3.	GA assists in designing the EAST divertor	3.	ASIPP fabricates parts for the lower divertors
4.	GA leads design of cryopumps for EAST	4.	ASIPP fabricates parts to refurbish eight DIII–D ion sources
5.	GA provides two new ion sources for EAST	5.	ASIPP provides main HV substation (138 kV-12,47 kV, 110 MVA) transformers
6.	GA assists ASIPP in RWM coil design	6.	Possibly ASIPP fabricates new NBI pole shields
	I-D		

THE FY06 \$4.3M GUIDANCE BUDGET REDUCTION WILL REQUIRE LARGE STAFF REDUCTIONS

We propose to restore those staff reductions in the 12 week case for FY07

	FY05	FY06	FY07
DIII-D National Budget	\$55,666K	\$51,374K	\$57,101K
Run Weeks	14	5	12
FTE Total Program	184.3	165.5	181.5

DIII-D NATIONAL FUSION PROGRAM

Institutional Budget Distribution (\$000) Science and Operations FY05-07

	FY05	<u>FY06</u>	FY06(I)	FY07	FY07(I)
DIII-D PROGRAM	55.7	51.4	10.0	57.1	8.9
SCIENCE	24,562	21,758	3,991	25,351	915
FACILITY OPERATIONS	31,104	29,616	5,994	31,750	7,962
RUN WEEKS	1 4	5	12	12	25
SCIENCE	24.6	21.8	4.0	25.4	0.9
GA DIII-D FUSION SCIENCE RESEARCH	15,483	12,666	3,112	15,915	0
GA	13,318	10,965	2,858	13,849	0
COLLABORATION SUPPORT FROM GA CONTRACT	2,165	1,701	254	2,066	
UCLA	515)		515	
U. MARYLAND	25	Į.		25	
U. IRVINE		725	625	101	
U. TORONTO	6 7			67	
OTHER GA COLLABORATOR SUBCONTRACTS	₁₇ ノ	J		17	
GA COLLABORATOR SUPPORT	1,440	1,076	154	1,341	
COLLABORATORS	9,079	9,092	879	9,436	915
PPPL	3,012	3,179	190	3,198	90
LLNL	2,485	2,488	655	2,560	795
ORNL	1,660	1,662		1,686	
UCSD	815	690		840	
U. TEXAS	374	374		385	
COLUMBIA	300	266	34	320	30
SNL	156	156		161	
U. WISCONSIN	151	151		156	
GEORGIA TECH.	126	126		130	
FACILITY OPERATIONS	31.1	29.6	6.0	31.7	8.0
GA	28,297	27,432	4,984	29,109	7,152
COLLABORATORS	2,807	2,184	1,010	2,641	810
PPPL	1,338	1,124	310	1,105	410
LLNL	583	479	300	600	250
ORNL	886	581	400	936	150

DIII-D NATIONAL FUSION PROGRAM

Institutional Staffing Distribution (FTE'S) Science and Operations FY05-07

	FY05	FY06	FY06 (I)	FY07	FY07 (I)
DIII-D PROGRAM	184.3	165.5	25.6	181.5	18.0
SCIENCE	85.8	74.0	11.9	82.7	3.7
FACILITY OPERATIONS	98.5	91.5	13.7	98.8	14.3
RUN WEEKS	14	5	12	12	25
SCIENCE	85.8	74.0	11.9	82.7	3.7
GA STAFF	44.4	35.0	8.4	42.9	0.0
COLLABORATORS	41.4	39.0	3.5	39.8	3.7
GA CONTRACT SUPPORTED	4 .8	4.1	0.0	4 .5	0.0
UCLA	3.5			3 .3	
U. MARYLAND	0.1			0.1	
U. IRVINE	0.8			0.7	
U. TORONTO	0.3			0.3	
OTHER GA COLLABORATOR SUBCONTRACTS	0.1			0 .1	
DOE DIRECT SUPPORTED	36.6	34.9	3.5	35.3	3.7
PPPL	10.0	9.5	0.6	9 .8	0.3
LLNL	9.5	9.0	2.5	8.8	3.0
ORNL	4.7	4.6		4.7	
UCSD	4.9	4.9		4.7	
U. TEXAS	2.8	2.8		2 .8	
COLUMBIA	2.1	1.7	0.4	2.1	0.4
SNL	1.0	1.0		1.0	
U. WISCONSIN	1.2	1.0		1.0	
GEORGIA TECH	0.4	0.4		0.4	
FACILITY OPERATIONS	98.5	91.5	13.7	98.8	14.3
GA	88.9	83.2	11.9	90.3	13.2
COLLABORATORS	9.6	8.3	1.8	8.5	1.1
PPPL	4.0	3.3	0.2	2.4	0.5
LLNL	2.0	2.0		2.5	
ORNL	3.6	3.0	1.6	3.6	0.6

VARIOUS RUN WEEK CASES FOR FY06 AND FY07

	FY06	FY06(I)		F۱	07 Cases		all	values \$K
Run Weeks	5	12	0	6	12	16	20	25
Shifts Per Day	1	1	1	1	1	1	1	1.5
GA								
GA FTE	118.18	133	120	127	133.2	133.2	133.2	136.2
GA Operations FTE	83.16	90	83	87	90.3	90.3	90.3	93.3
GA Science FTE	35.02	43	37	40	42.9	42.9	42.9	42.9
GA Operations Labor \$	\$21,080	\$22,814	\$21,745	\$22,793	\$23,658	\$23,658	\$23,658	\$24,444
GA Science Labor \$	\$10,823	\$13,289	\$11,699	\$12,648	\$13,565	\$13,565	\$13,565	\$13,565
Total GA Labor \$	\$31,903	\$36,103	\$33,445	\$35,441	\$37,223	\$37,223	\$37,223	\$38,009
GA Operations Procurements	\$6,352	\$7,152	\$3,781	\$4,731	\$5,451	\$5,931	\$6,411	\$7,011
GA Science Procurements	\$1,843	\$2,350	\$2,250	\$2,350	\$2,350	\$2,350	\$2,350	\$2,350
GA Procurements	\$8,195	\$9,502	\$6,031	\$7,081	\$7,801	\$8,281	\$8,761	\$9,361
GA Operations Budget	\$27,432	\$29,966	\$25,526	\$27,524	\$29,109	\$29,589	\$30,069	\$31,455
GA Science Budget	\$12,666	\$15,639	\$13,949	\$14,998	\$15,915	\$15,915	\$15,915	\$15,915
GA Total Budget	\$40,098	\$45,605	\$39,476	\$42,522	\$45,024	\$45,504	\$45,984	\$47,370
Collaborator Operations	\$2,184	\$2,807	\$2,376	\$2,508	\$2,641	\$2,641	\$2,641	\$2,641
Collaborator Science	\$9,092	\$9,079	\$8,492	\$8,964	\$9,436	\$9,436	\$9,436	\$9,436
Total Collaborators Budget	\$11,276	\$11,886	\$10,868	\$11,472	\$12,077	\$12,077	\$12,077	\$12,077
Total Operations Budget	\$29,616	\$32,773	\$27,902	\$30,032	\$31,750	\$32,230	\$32,710	\$34,096
Total Science Budget	\$21,758	\$24,718	\$22,441	\$23,962	\$25,351	\$25,351	\$25,351	\$25,351
Total DIII-D Budget	\$51,374	\$57,491	\$50,344	\$53,994	\$57,101	\$57,581	\$58,061	\$59,447

FY06 RESEARCH GOALS

5 Weeks Operation

 Milestone 161: Initial operation of DIII–D with co plus counter neutral beam injection

12 Weeks Operation (Incremental)

- Milestone 162: Assessment of density control in pumped, balanced double-null divertors
- Milestone 163: Assess the synergistic effect of plasma rotation and feedback control of resistive wall modes

FY07 RESEARCH GOALS

12 Weeks Operation

- Milestone 162: Assessment of density control in pumped, balanced double-null divertors
- Milestone 163: Assess the synergistic effect of plasma rotation and feedback control of resistive wall modes
- Milestone 164: Evaluate quiescent H-mode experiments with coplus counter injection

25 Weeks Operation (Incremental)

- Milestone 165: Assess stability limits compatible with steady-state operation in advanced tokamak plasmas with high triangularity double-null configuration
- Milestone 166: Evaluate modulated electron cyclotron current drive for stabilizing neoclassical tearing modes
- Milestone 167: Compare high pressure gas jet penetration for disruption mitigation and theoretical predictions

ADDITIONAL RUNTIME ON DIII-D IN FY07 WILL ALLOW IMPORTANT SCIENTIFIC ISSUES TO BE ADDRESSED

Runtime	6 Weeks	12 Weeks	16 Weeks	20 Weeks	25 Weeks
Stability science	2/1 Suppression at high β	Disruption mitigation, runaway electron suppression		NTM stabilization by modulated ECCD	
Transport science	Electron turbulence measurement and transport, 0.5 < T _i /T _e < 2	ITB, role of Shafranov shift and E×B flow	GYRO comparison with turbulence measurements		
Boundary science	DND particle control physics		Boundary flow and impurity transport	Crossfield transport in SOL	
Heating and CD science		FWCD code validation	Far off-axis ECCD		Full bootstrap discharges
High β, high bootstrap <i>AT</i>	β-limit in stationary DND <i>AT</i>		Develop active J(r) control in high β DND		Optimize steady-state with active profile control
Pedestal	Pedestal characteristics in pumped double null	Evaluate stochastic edge in pumped DND		Control of pedestal and ELMs	
RWM		RWM control at low rotation	Evaluate dissipation models		n = 2 RWM stability and control
QH-mode		Access with co plus counter NBI	Compare DND, SND		Physics extrapolation
High ℓ_i			Stability limit	Sawtooth stability	Demonstrate integrated scenario
Hybrid physics basis			Impact of q-profile and v _{\phi} profile on transport	$T_i/T_e \rightarrow 1$	Compatibility with divertor
Fast particle physics				Core Alfvén eigenmodes mode structure validate codes	Fast ion profile and transport by core modes
VH-mode					Sustain ELM free high β_{ped}

SUMMARY OF DIII-D PROGRAM INCREMENTAL BUDGET REQUESTS

	FY06			FY07	
Retain Scientific Staff	\$3,198K			\$357K	
	GA	\$2,979K	COLLAF	ODATORO	かりにブレ
D O	COLLABORATORS	\$219K	COLLAB	ORATORS	\$357K
Retain Operating Staff	\$1,814K GA	\$1,734K	GA	\$789K	\$789K
	COLLABORATORS	\$80K	αл		Ψ103IX
Consumables for Increased	\$800K	(To 12 Weeks)		\$1 ,710K	(To 25 Weeks)
Operating Time	GA	\$800K	GA		\$1,710K
SUB-TOTAL	\$5 ,812K			\$2 ,856K	
Add Students / Postdocs	\$330K			\$1,330K	
			Universit	ties (20)	\$1,000K
	LLNL (2)	\$330K	LLNL (2)		\$330K
Power Systems	\$372K			\$1,335K	
High Voltage Distribution			GA		\$938K
Serial Highway to Ethernet	GA	\$296K	GA		\$397K
Audio Amplifiers: RWM Control	PPPL	\$76K			
Neutral Beam Refurbishments	\$1,188K	#4.400 K	0.4	\$1,685K	# 4 04010
Power Supply Local Control Stations Replace Damaged Pole Shields	GA	\$1,188K	GA GA		\$1,010K \$675K
ECH	\$0K		G/Y	\$1,251K	φονοικ
ECH / Transmission lines 7 & 8	φυκ		GA	φ1,231K	\$1,009K
P2005 Steerable Launcher / Steering Upgrades			PPPL		\$242K
Diagnostic Refurb. / Upgrades	\$559K			\$150K	
Fast Ion Profile	GA/UCI	\$170K		V 10011	
Fast ELMS Data Acquisition Upgrade	LLNL	\$150K			
IRTV Heat Flux in Double Null	LLNL	\$50K	LLNL		\$50K
Reflectometer Pellet Injector Upgrade	PPPL ORNL	\$89K \$100K	ORNL		\$100K
		ψ1001ζ	OTIVE	₽ 04 <i>E</i> 1∕	ψισοιτ
FAST WAVE RF & Long Pulse Antenna	\$460K ORNL	\$300K	ORNL	\$315K	\$150K
117MHz ABB Conversion	PPPL	\$160K	PPPL		\$165K
New Diagnostics	\$300K	·		\$250K	
MSE for Counter Neutral Beam	LLNL	\$300K	LLNL	4200	\$250K
SUB-TOTAL	\$3 ,209K			\$6,316K	
TOTALS	\$9,021K			\$9,172K	

DIII-D WILL RESUME OPERATION IN MID FY06 WITH EXCITING NEW CAPABILITIES

CONTINUED RESEARCH ON DIII—D UNTIL ITER OPERATES WILL SIGNIFICANTLY ADVANCE THE RESEARCH PROGRAM ON ITER

 Major DIII-D contributions to the science basis for ITER in confinement, stability, heating and current drive, pedestal, and divertor physics, and long-pulse scenario development

DIII-D is ~1/4 scale ITER

DIII-D PROGRAM ELEMENTS SUPPORT ITER

- Develop long pulse, high performance discharges for ITER
 - Our vision: by the time ITER operates, advanced long-pulse operational scenarios will become the new reference for ITER
- MHD stabilization (NTM and RWM stabilization)
- Disruption characterization and mitigation
- Fast ion physics and fast particle driven instabilities in AT regimes
- Validate models of ECCD and FWCD
- Develop core transport models
 - To validate performance projections
 - To guide ITER operation
- H–mode pedestal understanding and control
 - ELM mitigation; QH-mode, stochastic edge
- Physics of impurity and tritium mass transport
 - Erosion, redeposition, ELMs; measure flows
- Reduction of heat flux to the divertor, radiative divertor
- In cooperation with our ITER partners and the International Tokamak Physics Activity

DIII-D WILL CONTINUE TO BE A WORLD CLASS PROGRAM AND FACILITY TO CARRY THE U.S. PROGRAM FORWARD TO BURNING PLASMAS

- DIII-D program will complete key research for ITER
 - Strong international partnerships
 - IEA/ITPA joint experiments
- DIII-D program will develop solid scientific base for steady state high performance discharges in support of ITER and beyond
- DIII-D program will play a lead role in advancing plasma and fusion science
- Added plasma control capabilities and new physics measurements realized during the long torus opening will make DIII-D a flexible and versatile research facility with
 - Increased scientific productivity
 - Increased scientific excellence

